Le Dialogue Client-Serveur : Anatomie d'une Requéte Web

Cette infographie illustre le processus d'une communication web standard. Elle montre comment un client formule une demande (requéte HTTP) pour obtenir des
informations, et comment le serveur analyse cette demande, la traite (souvent en interagissant avec une base de données) et renvole une réponse structuree.

Client

LES DONNEES
PEUVENT ETRE
ENVOYEES DE
DIFFERENTES
MANIERES

METHODE

GET, POST

Etape 1: La Requéte du Client

Le client construit et envoie
une requéte HTTP.

Les en-tétes expliquent au
serveur QUI parle, QUOI faire
et COMMENT répondre. ils
contiennent des métadonnées
comme le type de contenu,
I'authentification et I'origine.

CORPS
(OPTIONNEL)

Etape 2 : La Réponse du Serveur Serveur

Le serveur analyse la requéte,
la traite et construit une réponse.

1. Analyse 2. Traitement & 3. Construction
Intégration de la Réponse
Base de Données

Laréponse HTTP contient un
statut, des en-tétes et un corps.

STATUT

: Les en-tétes de réponse
e guident le navigateur. ils

expliquent comment

D, interpréter, sécuriser et mettre

W en cache le contenu regu.

EN-TETES
DE REPONSE

Les headers HTTP dans une requéete web

Comprendre les métadonnées échangées entre client et serveur

(i)
Requéte HTTP Serveur HTTP / API
-)
¢ Ligne de requéte
) X | GET /api/users HTTP/1.1)
Client HTTP Action demandée au serveur : Méthode + Ressource + Version HTTP
(Navigateur) P ———— | f
gy 2 <> Headgls HTTB e A L Lit la ligne de requéte
e = Req”efe Host: api.example.com — Host - site ciblé B8 ’* .)
TR SVOE" User-Agent: Mozilla/5.0 ~ User-Agent > client utilisé ™ —— | Analyse les headers
=R | > Accept: application/json - Accept -> format attendu = | : ; :
Headers automatiques Content-Type: application/json — Content-Type - format envoyé —» Authentification
LR L) Authorization: Bearer TOKEN — Authorization - identité / droits » Format de réponse
4 Origin: https://site-client.com - Origin - sécurité (CORS) J ; — Routage
ConstrUItAet REVOIC Les headers sont des métadonnées, pas des données métier | f 2 P
une requéte HTTP ’ ' Vérifie la sécurité J
. / ¢ Body (optionnel)) (1
B . (4 Zoom pédagogique Traite la requéte
"username™: "alice", ?7A quqi servent les headers ? & 4
"password": "eeeee &) Identifier le client 3 : 4
} @9 Décrire les données Construit la
\) ~ . .) \ ’
A ; ‘u Sécuriser l'acces reponse HTTP
| (Laormeegenvoyess (FOSARUD) - @ Gérer les origines - Adapter la réponse | | g

“ Message clé : Les headers HTTP expliquent la requéte au serveur pour qu’il sache QUI parle, QUOI faire et COMMENT répon(M

Bl

Les headers de réeponse HTTP

Comprendre les métadonnées envoyées par le serveur

~

Réponse HTTP

Ligne de statut

li — N Résultat du traitement
C(N:?i;g:;)') dfichage | | TTP/1-1 200 0K € (Code + message)
' L (3» ” p
Lit le code de statut , o 1 headers de reponse
> securite Content-Type: application/json Content-Type — format de la réponse
Analyse les headers Content-Length: 256 Content-Length — taille du contenu
) — — Cache-Control: no-cache Cache-Control — gestion du cache
v(elrgII?eSIa Se‘I:(W'te Set-Cookie: sessionId=abc123; HttpOnly — stockage coté client
(, CoOKies) Access-Control-Allow-Origin: https://site-client.com — autorisation CORS
[Interpréte le contenu J Access-Control-Allow-Methods: GET, POST — méthodes autorisées
\ —t Access-Control-Allow-Headers: Authorization, Content-Type — headers autorisés
Affiche / exécute Les headers décrivent COMMENT interpréter la réponse
le résultat - =
L‘ /i) (o =)
= Body (contenu)
{ , :
"id": 42, <_Donnees retournees
COOies " name" : llAlicell au CIIent
LL } J

~\

J

Serveur HTTP / API
[Construit une]

réponse HTTP

e Géneére : code de statut,
headers de réponse, body
S)

C, Zoom pédagogique
A quoi servent les headers de réponse ?

& Décrire le contenu
% Appliquer des regles de sécurité
Q) Autoriser ou bloquer des origines
“% Indiquer le comportement du navigateur
1 Optimiser les performances

Les headers de réponse HTTP expliquent au navigateur comment traiter et sécuriser la réponse du serveur.

L' Anatomie d'une Conversation Web

7] o >4

Etape 1: La Etape 2: La Logique Etape 3: La
Demande — du Serveur == Réponse
Comment le client Le traitement de la Comment le serveur
(navigateur) formule et requéte par une API construit et renvoie une
envoie une requéte HTTP. Node.js avec le réponse, et comment le

framework Express. client ’interprete.

Le Point de Départ : Le Client Construit la Requéte

000 <\

«->c()

GET /users HTTP/1.1

Host: api.example.com

Accept: application/json

User-Agent: Mozilla/5.0 (Windows NT 10.0; Winé4; x64)...

(https://api.example.com/users

A\ J

\ le navigateur s'en occupe

Chaque action dans votre navigateur initie la création d'un message
structure destine au serveur.

Décortiquer la Requéte HTTP : Le Langage du Client

GET /api/users HTTP/1.1

J

Action demandée au serveur (Méthode + Ressource + Version HTTP)

Host: apil.example.com
User-Agent: Mozilla/5.0

Accept: application/json J
Origin: https://site-client.com o

{

"scope": "user_data"

}.

Données envoyées (typiquement pour POST / PUT)

Le "passeport” de la
requéte : d'ou vient-
elle ?

~

Le Mur de Sécurité du Web : La Politique de Méme Origine

https://monsite.com

Par défaut, les navigateurs appliquent une regle de sécurité stricte : un script sur une
page web ne peut faire de requétes qu'a des ressources de la méme origine (méme
protocole, méme domaine, méme port).

Une page sur https://monsite.com est bloquée si elle essaie d'appeler une API sur
https://api.partenaire.com.

Mais le web moderne dépend de ces interactions ! Comment permettre ces communications
de maniere sécurisée ?

La Solution : CORS (Cross-Origin Resource Sharing)

CORS est un mécanisme basé sur des en-tétes HTTP qui permet a un serveur
d'indiquer des origines (domaines) autres que la sienne, a partir desquelles un
navigateur devrait étre autorisé€ a charger des ressources.

Cest la clé d'acces qui permet de franchir 1également la ‘frontiere’ entre les
domaines.

Le Triangle CORS : La Négociation en 4 Etapes

Serveur Web
"Site A"
(monsite.com)

1. Le Chargement

L'utilisateur charge le code
HTML/]S depuis le Serveur A
(monsite.com). C'est la situation
de départ, de méme origine.

Client
(Navigateur)

4. Le Controle de Sécuritée

Le navigateur recoit la réponse. Il agit
comme un agent de sécurité : il
compare l'origine du site (monsite.com)
avec le 'visa' regu. Si ¢a correspond,

les données sont transmises au JS.
Succes ! Sinon, c'est une erreur CORS.,

2. La Tentative d'Acces

Le JS tente de faire une requéte a une
API sur le Serveur B. Le navigateur
attache le "passeport™: 'en-téte

Origin: https://monsite.com

3. L'Autorisation Serveur API

Le Serveur B recoit la requéte, "Site B"
examine l'en-téte 'Origin’ et, s'il (abi.aooale.c om)
l'autorise, renvoie la réponse avec PEGROUIS
le 'visa": I'en-téte Access-Control-

Allow-Origin: ¢ = .
Access-Control-Allow-0rigin: \’\S/;

https://monsite.com

L'Arrivée au Cceur du Systeme:
Le Serveur Node.js [Express

Method

GET /api/users HTTP/1.1

e N
@] Headers
Content-Type: application/json...
Authorization: Bearer TOKEN...
_ J
\
[3 Body
{
"username": "alice",
*pasenerd™: ..o
}
_ J

Serveur Node.js [Express

{33 Premiére étape : Middleware

app.use(bodyParser.json())

Role: Prépare la requéte, par exemple en parsant le
JSON du body.

— Deuxiéme étape : Routeur Express

Role: L'aiguilleur qui dirige la requéte vers le bon code
en fonction de ['URL et de la méthode.

Le serveur n'est pas un monolithe ; c'est une chaine de traitement organisée.

Le Routeur Express : L'Aiguilleur des Requétes

GET /temperature

POST /temperature
PUT /temperature/12

DELETE /temperature/12

Routeur VPOATE
EXpress

app.delete('..."',

DELETE

@ GET = Read (SELECT) ® PUT = Update (UPDATE)
® POST = Create (INSERT) @ DELETE = Delete (DELETE)

Le routeur est le cerveau de I'AP], il associe une intention (méthode + URL) a une action (code).

Lire la Requéte : L'Objet "req" et ses Propriétés

Incoming Requests The "req Object Code Express (Handler)

‘req’ (Request)

URL: /temperature/?ID=5

3 req.method
app.put('/temperature/:id', (req, res) => {
req.url const filter = req.query.ID; // 1it ?ID=...
J(— const id = req.params.id; L L ey M
URL: /temperature/12 “—=> req.query (e.g. ?ID=5) ~——— const newTemp = req.body.TEMP; // 1it {"TEMP": ..
Body: { "TEMP": 23 } ~ // ... logique métier
% = req.params (e.qg. /12) /)
> req.body (e.g. {"TEMP": ..}) /

URL: /temperature r&)
Bodys#{ TEMPE="185]}]

e req.params - parameétres dans I'URL (ex: /:1id)
* req.query - parametres apres '?’
* req.body - données JSON envoyees (POST/PUT)

Le Retour du Voyage : Le Serveur Construit la Réponse

Action du serveur

client)

e Génere un Code de statut
(ex: 200 OK, 404 Not Found)

e Prépare des Headers de
réponse (Instructions pour le

e Construit le Body (contenu)

Construit une
réeponse HTTP

J

Réponse HTTP

HTTP/1.1 200 OK
Content-Type: application/json
Date: Tue, 13 Apr 2023 1:16:49 GMT

{

Edatai-aee

La réponse est aussi structurée que la requéte, fournissant un retour
clair et des instructions précises au client.

Décortiquer la Réponse HTTP : Le Langage du Serveur

(T N
Lighe de statut
Résultat du traitement
HTTP/1.1 200 OK — @ode + MeSsage)
Headers de réponse
Content-Type: application/json - N
Cache-Control: no-cache _ Le ‘visa’ CORS qui
Access-Control-Allow-0rigin: * > | VISA| autorise I'acces a
lorigine de la requéte

Body (contenu) \ /
{

e Gl 4 S Données retournées au

"name": "Alice" client
}

. J

Fin du Voyage : Le Client Interprete la Réponse

Réponse HTTP E Client HTTP

Ligne de statut
HTTP/1.1 200 OK

1. Lit le code de statut : Succes
X (200) ? Erreur (404, 500) ?

N

Headers de réponse

2. Analyse les headers : Y a-t-il

f —
Content-Type: application/json o— des regles CORS a respecter ?
Cache-Control: no-cache i Faut-il mettre en cache ?
Access-Control-Allow-0rigin: *
—— 3. Interprete le contenu : Si C'est

Body (contenu) du JSON, le parser pour l'utiliser

dans l'application.

FHI
N\
S~
v

Sin e)
"name": "Alice"

}

4. Affiche / exécute le résultat :
Mettre a jour l'interface utilisateur
avec les nouvelles données.

(A

En Pratique : Activer CORS surun
Serveur Express e

Installation Configuration de Base (Tout Autoriser)
Pour gérer les en-tétes CORS facilement, on Pour activer CORS pour toutes les routes et toutes
utilise le package "cors . les origines, ajoutez-le comme middleware.

npm install cors
const express = require('express'):

const cors = require('cors');
const app = express();

// Middleware CORS qui autorise
app.use(cors());

// Vos routes ici...
app.listen(3000);

Configuration Avancée : Sécuriser Votre APl en Production

En production, il est dangereux de tout autoriser. Configurez CORS pour n'accepter que les origines de
confiance.

Autoriser une Origine Spécifique Activer CORS pour une Route Spécifique

N'autorisez que votre application frontend. Vous pouvez aussi I'activer au cas par cas pour
chaque route.

app.use(cors({
origin: 'https://mon-app-frontend.com’ app.get('/api/donnees-publiques', cors(), (reg, res) =>

E)D)%
E)F;

Configurer CORS précisément est une étape essentielle pour sécuriser une API et
controler qui peut utiliser vos donnees.

