FICHE SYNTHÈSE: ADRESSES IPV4

Définition

IPv4 (Internet Protocol version 4) = Adresse logique identifiant de manière unique un équipement sur un réseau IP.

• Couche OSI: Couche 3 (Réseau)

• Portée : Locale ou Internet (routable)

• Taille: 32 bits (4 octets)

• Format : Notation décimale pointée

• **Nombre total**: $2^{32} = 4294967296$ adresses possibles

Structure de l'Adresse IPv4

Format standard: 4 octets = 32 bits

Composition

Une adresse IPv4 se compose de deux parties :

La séparation est définie par le masque de sous-réseau.

Classes d'Adresses (Classful)

Système historique (obsolète depuis CIDR, mais toujours enseigné).

Classe	Premier octet	Plage	Masque par défaut	Nb réseaux	Nb hôtes/réseau
A	0-127	0.0.0.0 - 127.255.255.255	/8 (255.0.0.0)	128	16 777 214
В	128-191	128.0.0.0 - 191.255.255.255	/16 (255.255.0.0)	16 384	65 534
С	192-223	192.0.0.0 - 223.255.255.255	/24 (255.255.255.0)	2 097 152	254
D	224-239	224.0.0.0 - 239.255.255.255	N/A	Multicast	-
E	240-255	240.0.0.0 - 255.255.255.255	N/A	Réservé (expérimental)	-

Identification des bits de début

Masques de Sous-Réseau

Notation CIDR (Classless Inter-Domain Routing)

```
192.168.1.0/24
└─ Nombre de bits à 1 dans le masque (préfixe)
```

Table de conversion CIDR

CIDR	Masque décimal	Nombre d'hôtes	Cas d'usage
/8	255.0.0.0	16 777 214	Très grand réseau
/16	255.255.0.0	65 534	Grand réseau
/24	255.255.255.0	254	Réseau standard (LAN)

CIDR	Masque décimal	Nombre d'hôtes	Cas d'usage
/25	255.255.255.128	126	Sous-réseau moyen
/26	255.255.255.192	62	Petit sous-réseau
/27	255.255.255.224	30	Très petit réseau
/28	255.255.255.240	14	Micro-réseau
/29	255.255.255.248	6	Lien point-à-point
/30	255.255.255.252	2	Lien entre routeurs
/31	255.255.255.254	2	Lien P2P (RFC 3021)
/32	255.255.255.255	1	Hôte unique

Formules de calcul

```
Nombre d'hôtes = 2^{(32 - préfixe)} - 2

Exemples :

/24 \rightarrow 2^{(32-24)} - 2 = 2^8 - 2 = 254 hôtes

/26 \rightarrow 2^{(32-26)} - 2 = 2^6 - 2 = 62 hôtes
```

Pourquoi -2?

- 1 adresse pour le **réseau** (tous les bits hôte à 0)
- 1 adresse pour le **broadcast** (tous les bits hôte à 1)

Adresses Spéciales

1. Adresses Privées (RFC 1918)

Non routables sur Internet, utilisées dans les réseaux locaux.

Classe	Plage	CIDR	Nombre de réseaux
Α	10.0.0.0 - 10.255.255.255	10.0.0.0/8	1 réseau de classe A
В	172.16.0.0 - 172.31.255.255	172.16.0.0/12	16 réseaux de classe B
С	192.168.0.0 - 192.168.255.255	192.168.0.0/16	256 réseaux de classe C

2. Adresse de Loopback

• 127.0.0.1: Interface locale (localhost)

- Test de la pile TCP/IP sans carte réseau
- Trafic ne quitte jamais la machine

3. APIPA (Automatic Private IP Addressing)

169.254.0.0/16 (169.254.0.1 - 169.254.255.254)

- Auto-configuration en l'absence de DHCP
- Windows, macOS, Linux
- Non routable

4. Adresse de Broadcast

255, 255, 255, 255

- Broadcast limité (limited broadcast)
- Envoi à toutes les machines du segment local
- Ne traverse pas les routeurs

5. Adresse Multicast (Classe D)

224.0.0.0 - 239.255.255.255

Exemples:

• 224.0.0.1: Tous les hôtes du segment

• 224.0.0.2: Tous les routeurs du segment

• 224.0.0.5 : OSPF (protocole de routage)

• 239.255.255.250 : SSDP (UPnP)

6. Autres Adresses Réservées

Usage
Réseau actuel (source uniquement)
Adresse par défaut / aucune adresse
Documentation (TEST-NET-1)
Documentation (TEST-NET-2)
Documentation (TEST-NET-3)
Réservé (Classe E)

Calculs de Sous-Réseaux

Exemple 1: Réseau 192.168.1.0/24

Adresse réseau : 192.168.1.0

Masque : 255.255.255.0 (/24)

Première IP: 192.168.1.1 Dernière IP: 192.168.1.254 Broadcast: 192.168.1.255

Nombre d'hôtes : 254

Exemple 2 : Découper 192.168.1.0/24 en 4 sous-réseaux

Masque d'origine : /24 (254 hôtes)

Nouveau masque : /26 (62 hôtes par sous-réseau)

Sous-réseau 1 : 192.168.1.0/26 (1-62) Sous-réseau 2 : 192.168.1.64/26 (65-126) Sous-réseau 3 : 192.168.1.128/26 (129-190) Sous-réseau 4 : 192.168.1.192/26 (193-254)

Méthode de calcul rapide

Incrément de sous-réseau = 256 - valeur du dernier octet du masque

Exemple avec /26 (255.255.255.192):

```
256 - 192 = 64
Donc : 0, 64, 128, 192 (4 sous-réseaux)
```

Trouver l'adresse réseau d'une IP

Méthode: ET logique entre l'IP et le masque

IP: 192.168.1.75

Masque: 255.255.255.192 (/26)

Binaire :

IP : 11000000.10101000.00000001.01001011
Masque : 11111111.11111111.11111111.11000000

Réseau : 11000000.10101000.00000001.01000000

= 192.168.1.64/26

Commandes Pratiques

Linux

```
# Afficher la configuration IP
ip addr show
ip a
# Interface spécifique
ip addr show eth0
# Afficher les routes
ip route show
ip route get 8.8.8.8
# Ancienne méthode (ifconfig)
ifconfig
ifconfig eth0
# Configurer une IP statique (temporaire)
sudo ip addr add 192.168.1.100/24 dev eth0
sudo ip link set eth0 up
# Supprimer une IP
sudo ip addr del 192.168.1.100/24 dev eth0
# Tester la connectivité
ping -c 4 192.168.1.1
traceroute 8.8.8.8
```

Windows

```
# Afficher la configuration
ipconfig
ipconfig /all

# Libérer/renouveler IP DHCP
ipconfig /release
ipconfig /renew

# Afficher la table de routage
route print

# Ping et traceroute
ping 192.168.1.1
tracert 8.8.8.8

# PowerShell
Get-NetIPAddress
```

```
Get-NetRoute
Test-NetConnection -ComputerName 192.168.1.1
```

macOS

```
# Afficher la configuration
ifconfig
networksetup -listallnetworkservices
networksetup -getinfo "Wi-Fi"

# Renouveler IP DHCP
sudo ipconfig set en0 DHCP
```

Calculateurs de sous-réseaux en ligne de commande

```
# ipcalc (Linux)
ipcalc 192.168.1.0/24

# sipcalc
sipcalc 192.168.1.0/24

# Python one-liner
python3 -c "import ipaddress; net =
ipaddress.IPv4Network('192.168.1.0/24'); print(f'Réseau:
{net.network_address}\nBroadcast: {net.broadcast_address}\nHôtes:
{net.num_addresses-2}')"
```

Aspects Sécurité

1. IP Spoofing (Usurpation d'IP)

Principe: Falsifier l'adresse IP source dans les paquets pour :

- · Cacher son identité
- Contourner des filtres basés sur IP
- Attaques DDoS (réflexion/amplification)

Contre-mesures:

- Filtrage anti-spoofing (ingress/egress filtering)
- Reverse Path Forwarding (RPF)
- Authentification forte (pas seulement basée sur IP)

2. Scanning de Réseaux

```
# Nmap : scanner un réseau
nmap -sn 192.168.1.0/24 # Ping scan
nmap -p- 192.168.1.10 # Tous les ports

# Masscan : scanner rapide
masscan 192.168.1.0/24 -p80,443

# fping : ping multiple
fping -g 192.168.1.0/24
```

3. Reconnaissance Passive

```
# Whois : information sur IP publique
whois 8.8.8.8

# DNS inverse
dig -x 8.8.8.8
nslookup 8.8.8.8
```

4. Attaques par Fragmentation IP

• Ping of Death: Paquets ICMP fragmentés trop grands

• **Teardrop**: Fragments IP qui se chevauchent

Protection: Pare-feu, détection d'intrusion (IDS)

NAT (Network Address Translation)

Principe

Permet à plusieurs machines privées de partager une IP publique.

Types de NAT

Туре	Description
SNAT	Source NAT (IP privée → IP publique)
DNAT	Destination NAT (redirection de ports)
PAT	Port Address Translation (NAT + ports)

Туре	Description
Full Cone NAT	Restriction minimale
Restricted NAT	Filtrage par IP
Port Restricted	Filtrage par IP:port
Symmetric NAT	Mapping unique par destination

Script Python: Manipulation IPv4

```
import ipaddress
def analyser ip(ip avec masque):
    """Analyser une adresse IP avec son masque"""
    network = ipaddress.IPv4Network(ip_avec_masque, strict=False)
    print(f"Adresse IP : {ip_avec_masque}")
    print(f"Adresse réseau : {network.network_address}")
    print(f"Masque : {network.netmask} (/{network.prefixlen})")
    print(f"Broadcast : {network.broadcast address}")
    print(f"Première IP : {network.network address + 1}")
    print(f"Dernière IP : {network.broadcast_address - 1}")
    print(f"Nombre d'hôtes : {network.num addresses - 2}")
    print(f"Adresse privée : {network.is_private}")
def ip_dans_reseau(ip, reseau):
    """Vérifier si une IP appartient à un réseau"""
    ip_obj = ipaddress.IPv4Address(ip)
    net_obj = ipaddress.IPv4Network(reseau, strict=False)
    return ip_obj in net_obj
def decoupe_reseau(reseau, nb_sous_reseaux):
    """Découper un réseau en sous-réseaux"""
    network = ipaddress.IPv4Network(reseau, strict=False)
    # Calculer le nouveau préfixe
    import math
    bits_necessaires = math.ceil(math.log2(nb_sous_reseaux))
    nouveau_prefixe = network.prefixlen + bits_necessaires
    sous_reseaux = list(network.subnets(new_prefix=nouveau_prefixe))
    return sous_reseaux[:nb_sous_reseaux]
# Exemples d'utilisation
print("=== Analyse d'une IP ===")
analyser_ip("192.168.1.100/24")
print("\n=== Test d'appartenance ===")
print(ip_dans_reseau("192.168.1.50", "192.168.1.0/24")) # True
```

```
print(ip_dans_reseau("192.168.2.50", "192.168.1.0/24")) # False

print("\n=== Découpage en sous-réseaux ===")
sous_reseaux = decoupe_reseau("192.168.1.0/24", 4)
for i, sr in enumerate(sous_reseaux, 1):
    print(f"Sous-réseau {i} : {sr}")
```

Script Bash: Calculateur Subnet

```
#!/bin/bash
# Fonction pour calculer les infos d'un réseau
subnet_calc() {
    local ip=$1
    local cidr=$2
    # Utiliser ipcalc si disponible
    if command -v ipcalc &> /dev/null; then
        ipcalc -b -n -m $ip/$cidr
    else
        # Alternative avec Python
        python3 -c "
import ipaddress
net = ipaddress.IPv4Network('$ip/$cidr', strict=False)
print(f'Network: {net.network address}')
print(f'Netmask: {net.netmask}')
print(f'Broadcast: {net.broadcast_address}')
print(f'HostMin: {net.network_address + 1}')
print(f'HostMax: {net.broadcast_address - 1}')
print(f'Hosts: {net.num_addresses - 2}')
    fi
}
# Utilisation
subnet_calc 192.168.1.0 24
```

IPv4 vs IPv6

Caractéristique	IPv4	IPv6
Taille	32 bits	128 bits
Format	Décimal pointé	Hexadécimal
Adresses totales	~4,3 milliards	340 undécillions
Broadcast	Oui	Non (multicast)

Caractéristique	IPv4	IPv6
NAT	Nécessaire	Optionnel
Fragmentation	Routeurs	Hôtes uniquement
Configuration	DHCP	SLAAC / DHCPv6
En-tête	Variable (20-60 octets)	Fixe (40 octets)

Points Clés à Retenir

32 bits = 4 octets en notation décimale pointée

▼ Partie réseau + partie hôte définie par le masque

▼ CIDR: notation moderne avec /préfixe

Adresses privées: 10.x, 172.16-31.x, 192.168.x

V Loopback : 127.0.0.1

Broadcast: 255.255.255.255

NAT : permet le partage d'IP publiqueCalcul d'hôtes : 2^(32-préfixe) - 2

Exercices Pratiques

Exercice 1: Identification

Pour chaque adresse, identifier : classe, type (privée/publique), usage

- 10.0.0.1
- 172.217.16.142
- 192.168.1.1
- 127.0.0.1
- 224.0.0.1

Exercice 2 : Calcul de sous-réseaux

Découper 192.168.10.0/24 en 8 sous-réseaux égaux. Donner pour chacun :

- Adresse réseau
- Première IP utilisable
- Dernière IP utilisable
- Broadcast

Exercice 3 : Détermination du masque

Combien de bits faut-il pour avoir :

- 50 hôtes minimum?
- 500 hôtes minimum ?
- 5000 hôtes minimum?

Ressources

- RFC 791: Internet Protocol
- RFC 1918 : Address Allocation for Private Internets
- RFC 3927 : Dynamic Configuration of IPv4 Link-Local Addresses
- Calculateurs en ligne :
 - https://www.subnet-calculator.com/
 - https://www.calculator.net/ip-subnet-calculator.html
- Outil: ipcalc, sipcalc (Linux)