Git en Local : Maitrise du Versionning
et du Voyage Temporel

Un guide pratique pour initialiser un dépét, naviguer dans I'historique
et gérer des branches de développement.

Objectifs Pedagogiques

Initialiser un dépdt Git pour un nouveau projet.

Créer et enregistrer plusieurs versions d'un fichier.

Consulter I'historiqgue des modifications de maniere claire.

Revenir temporairement sur une ancienne version pour inspection.

Créer une nouvelle ligne de développement (branche) a partir d'un point passé.

QR K

Comprendre et identifier les commandes potentiellement destructrices.

Périmetre
Ce guide se concentre exclusively sur l'utilisation de Git en local. Aucune interaction
» réseau (GitHub, GitLab, etc.) n'est requise ou abordée.

Préparation de I'Environnement de Travail

Vos Outils

G2

Git installé (Vérifier avec
git --version)

Un terminal ou une ligne
de commande

Un éditeur de texte (ex:
VS Code, Sublime Text,
Vim)

Votre Identité Numeérique

La premiéere fois que vous utilisez Git sur une
machine, il est essentiel de définir votre identité.
Ces informations seront associées a toutes vos
contributions.

A n'exécuter qu'une seule fols par machine
git config --global user.name "Votre Nom"
git config --global user.email "vous(@exemple.com"

Etape 1& 2 : La Naissance du Projet et son
Initialisation

Créer un répertoire de travail et le placer sous le contréle de version de Git.

Creéation de la structure Activation de Git
mkdir tp-git-local git: 1Nnl1E
cd tp-git-local gilt status

echo "Version 1 du projet" > projet.txt S ;
La commande git init cree un sous-dossier

caché ".git’. C'est le 'cerveau’ de votre déepédt,
contenant toute I'histoire. "git status confirme
que projet.txt’ existe mais n'est pas encore suivi
(‘untracked’).

= =Pk e ——— / @/

Etape 3 : Le Premier Jalon (Commit)

Enregistrer la premiere version officielle de notre fichier dans I'historique du projet.

Le Processus en Deux Temps

_ : : Zone de — . *
git add projet.txt : Préparation : git commit -m ‘...’
. (Staging Area)
projet.txt IR e : Commit
1. Préparer la "Photo" (git add) : Sélectionner les 2. Prendre la "Photo" (git commit) : Créer un instantané
fichiers dont les modifications seront incluses dans le permanent des fichiers préparés, avec un message descriptif.

prochain point de sauvegarde.

git add projet.txt git commit -m "Version 1 : création du fichier projet"

Vérification
glt log --oneline
Affiche une ligne unique avec un identifiant (hash) et le message du commit, confirmant que notre jalon a été posé.

Etape 4 & 5 : Construire la Chronologie du Projet
A\

Objectif : Ajouter de nouvelles versions au projet pour enrichir son historique.

Le Cycle de Développement

Modifier -> Ajouter -> Valider. masterp___,.,.;;,

Creation de la Version 2
echo "Version 2 du projet" >> projet.txt

git add projet.txt
git commit -m "Version 2 : ajout d’une ligne"

Création de la Version 3
echo "Version 3 du projet" >> projet.txt

git add projet.txt
git commit -m "Version 3 : amélioration du contenu"

Vue d'ensemble de I'historique
git log --oneline

ffi Commit 3: Amélioration

-} Commit 2: Ajout

Commit 1: Création

L'Exploration Temporelle : Naviguer dans I'Historique

Concept Clé : Chaque commit dans Git est un portail vers une version passée compléte de votre
projet. Vous pouvez "visiter" n'importe lequel de ces moments.

- /7,

|

4 | 'Version 1 do prejet ’ 7 @ } @
i | > A O »
L'outll d exploratlon La commande Métaphore Visuelle : Pensez a I'historique
. checkout permet de déplacer votre comme a une bibliotheque de sauvegardes.
'tete de Iecture (HEAD) vers un commit git checkout vous permet de consulter un

spécifique. ancien volume en lecture seule.

Etape 6 : Visite Temporaire d’'une Ancienne Version

@ Obijectif : Consulter le contenu du projet tel qu'il était lors d'un commit passé.

Procédure

1. Ildentifier la destination : Listez les commits pour trouver le hash (identifiant) de la

version que vous souhaitez visiter.

git log --oneline

2. Voyager dans le temps : Utilisez “checkout™ avec le hash désiré (ex: celui de la

‘Version 1').

git checkout <hash_du_commit_version_1>

3. Inspecter le fichier : Vérifiez que le contenu est bien celui de la version 1.

cat projet.txt \
Affiche: "Version 1 du projet"

'\ **Etat 'HEAD détachée™* : Git vous informe que vous étes dans un état de
consultation. Les modifications ici ne font partie d'aucune branche.

=] Retour au présent

Pour revenir a la derniére version de votre branche de travail principale, exécutez :

git checkout master # ou main selon votre configuration

HEAD

—)C) Commit 3: Amélioration

<> Commit 2: Ajout

HEAD:L--->) Commit 1: Creation

O

C) Commit 2: Ajout

HEAD

—>O Commit 1: Création ——

Etape 7 : Repartir du Passé via une Nouvelle

Branche

Objectif : Créer une nouvelle ligne de développement alternative a partir d'une
ancienne version, sans perturber la branche principale.

La Méthode Recommandée

La commande git switch -c est |'outil moderne et sQr pour créer et basculer sur
une nouvelle branche en une seule étape.

Mise en CEuvre

1. Créer et basculer
Placez-vous sur |'ancien commit et créez la branche reprise simultanément.

Remplacer <hash_ancien> par le hash de 1la "Version 2" par exemple
git switch -c reprise <hash_ancien>

2. Créer une nouvelle histoire
Modifiez le fichier et validez. Ce commit existera uniquement sur la nouvelle

branche reprise.

echo "Version 4 (reprise)" >> projet.txt

git add projet.txt
git commit -m "Reprise : nouvelle version depuis un ancien commit"

master

Commit 1:
Création

Commit 2: Ajout
(Version 2)

Commit 3:
Amélioration

Vous avez créé un 'univers paralléle' ou le projet a évolué différemment a partir de la Version 2.

V

O

v

Etape 8 : Visualiser les Univers Paralléles

Objectif : Obtenir une représentation graphique de I'historique, montrant toutes les branches et leur point de
divergence.

La Commande Magique : "git log --graph’ enrichi de quelques options utiles.

~

git log --oneline --graph --decorate --all

D

Analyse du Résultat Attendu

* (O (HEAD -> reprise) Reprise : nouvelle version depuis un ancien commit . . .
 Le terminal affichera un diagramme en

/ \ art ASCII.
* (O (master) Version 3 : Amélioration : .VOUS alboc c.:lalr‘et.nent '? brancp vl
master’ (ou ‘'main’) continuant jusqu'a
K | la 'Version 3'.
\ | L | » Vous verrez une nouvelle branche
* (O Version 2 : Ajout ‘reprise’ qui a divergé aprés la
Ll 'Version 2' et qui possede son propre
Ve commit 'Reprise’.

x () Version 1 : Création

Commande Dangereuse : Le Point de Non-Retour

git reset --hard <hash>

e Replace la branche actuelle sur le commit spéecifié (<hash>).

o Supprime définitivement tous les commits qui ont eu lieu aprées ce <hash> sur
la branche actuelle.

e Modifie les fichiers de votre répertoire de travail pour qu'ils correspondent
exactement a I'état du <hash>. Les modifications non validées sont perdues.

A utiliser avec une extréme prudence. C'est un outil puissant pour annuler des erreurs, mais il
réécrit I'histoire de maniere destructive. Il n'y a généralement pas de retour en arriere possible.

Bilan : Votre Boite a Outils Git Essentielle

Fondation & Historique Exploration & Navigation = Branches & Réécriture
git init git log --oneline git switch -c <nom> <hash>
Initialise un dépaot. Affiche I'historique de maniere Crée et bascule sur une
concise. nouvelle branche.

git add <fichier> "

: S status ~
Ajoute un fichier a la zone de E/ll A s g1t branch .
oréparation. réggrtt?)ir: at actuei du Liste les branches existantes.
git commit -m "..." git checkout <hash> git reset --hard <hash>
Crée un nouvel instantané Visite un ancien commit | Rglnltlallse I'h|§tor|que de
(commit). (lecture seule). maniere destructive.

La maitrise de ces commandes constitue une base solide pour toute utilisation
de Git, en local comme en équipe.

