Maitriser Git & GitHub

Des Fondamentaux a la Collaboration Efficace

O

¢ git

Objectifs
d'’Apprentissage

O 01 b WOMNN =

Comprendre |la nécessité de la gestion de
version pour tout projet de développement.

Distinguer l'outil (Git) de la plateforme
(GitHub) et leur interaction.

Maitriser le flux de travail local essentiel :
initialiser, ajouter, valider.

Utiliser les branches pour un développement
parallele, isolé et sans risque.

Collaborer efficacement sur des projets en
utilisant le modele Fork & Pull Request.

Appréehender les bonnes pratiques et les
outils pour un usage professionnel.

Pourquoi la Gestion de Version est-elle Cruciale ?
Le Developpement sans Filet de Sécurite

Imaginez deux développeurs, Alice et Bob, travaillant sur le méme projet. lIs rencontrent rapidement
deux problemes majeurs :

Probleme 1: Perte de travail. Probleme 2 : Conflits de collaboration.
"L'ordinateur de Bob est vieux et peu fiable. |l Alice et Bob modifient le méme fichier. Alice utilise
redémarre beaucoup et Bob ne veut *vraiment* pas une valeur, Bob une autre. Comment fusionner leurs
avoir a refaire tout son travail tout le temps." modifications sans écraser le travail de l'autre ? Le
Comment sauvegarder et restaurer le code de risque est une "lutte acharnée ou Alice change [la
maniere fiable ? valeur], puis Bob la rétablit, puis Alice la modifie a
nouveau".
Allce code.py

Conclusion : Sans un systéme dédié, le développement devient chaotique, risqué et inefficace.

L'Evolution : Des Systémes Centralisés aux Systémes Distribués

CVCS (Systeme de Gestion de Version
Centralisé) - Ex: Subversion

Un serveur unique contient tous les fichiers versionnés. Les clients
extraient les fichiers depuis ce dépdt central.

Central VCS Server

Computer A g)

Version Database
(Version 3]

(Version 2]
(Version 1 j

Computer B

File

£\ Inconvénients

» Représente un point unique de défaillance ("single point of
failure”). Si le serveur est en panne, personne ne peut collaborer.

« Le travail hors ligne est tres limité.

DVCS (Systeme de Gestion de Version
Distribué) - Ex: Git

Les clients n'extraient plus seulement la derniere version d'un
fichier, mais ils dupliquent complétement le dépat.

Central Server
Version Databese | COmputer A

—

Version Database !
((verdon2 | I
(e

I J

o ' '8 =

(T g r—

Vecslen Datsbase | COmputer B

2

= | G = | G
-~

& — C J

—
Version Database | Computer C

0T

@ Avantages

» Chaque client possede une sauvegarde compléte de I'historique.

 La plupart des opérations (commit, branch, merge) sont locales
et donc extrémement rapides.

 Collaboration et travail hors ligne fluides.

Distinction Essentielle : Git n‘est pas GitHub

> git push

LOCAL <§
Git

Git est le logiciel de gestion de version
distribué qui s'exécute sur votre machine
locale. C'est I'outil qui suit les changements
de votre code.

Analogie : Le moteur.

REMOTE / EN LIGNE

GitHub

GitHub est un service d’hébergement en
ligne pour les dépdbts Git. C'est la
plateforme pour stocker, partager et
collaborer sur le code.

Analogie : Le garage et le club social.

Alternatives : GitLab, Bitbucket.

Le Cycle de Vie d'un Fichier : Les Trois Etats de Git

Pour comprendre Git, il est primordial de connaitre les trois états principaux dans lesquels un fichier

peut se trouver.

Répertoire de Travail
(Working Directory)

Les fichiers que vous
modifiez sur votre
disque. C'est votre "bac
a sable".

git add <fichier>

J

Etat du fichier : Modifié

(Modified)

Zone d'Index
(Staging Area)

Une étape intermédiaire
ou vous préparez les
modifications que vous
souhaitez inclure dans la
prochaine validation.
C'est un "brouillon" du
prochain commit.

Etat du fichier : Indexé
(Staged)

git commit

R

Dépot Git
(.git directory)

La base de données
locale ou Git stocke
de maniere
permanente les
instantanés de votre

projet.
e e

Etat du fichier : Validé
(Committed)

Le Quotidien du Déeveloppeur : Le Cycle de Travail Local

N

1. Démarrer un projet
gIERINTE

Crée un nouveau dépot Git dans le
répertoire courant.

git clone [url]

Crée une copie locale d'un dépdt
distant existant.

2. Veérifier I'état
git status
Montre |'état des fichiers (modifiés,

indexés, non suivis). C'est votre
commande la plus utilisée.

Recommencer

e

’

3. Préparer la validation
git add [fichier]

Ajoute les modifications du fichier a la
zone d'index (Staging Area).

4. Enregistrer l'instantané

git commit -m "Message de
commit descriptif"”

Enregistre de maniere permanente
l'instantané de la zone d'index dans le
dépdt local.

Synchronisation : Interagir avec un Dépot Distant

Une fois le travail validé localement, il faut le partager ou récupérer les mises a jour des
collaborateurs.

git push

Envoyer le travail: Envoie vos commits validés
localement vers le dépdt distant.

——————————————-

git pull

Récupérer et fusionner : Récupére les changements
du distant et les fusionne automatiquement.

R e o Remote / GitHub

Récupérer sans fusionner : Récupere les
changements mais ne les integre pas a votre travail.

Le Développement Parallele Simplifié : Le Concept
des Branches

Qu'est-ce qu'une branche ?

e C'est un simple pointeur mobile vers un commit.
 La branche par défaut est nommée "master’ ou "main’.

feature-branch

Pourquoi utiliser des branches ?

e **|solation :* Permet de développer une nouvelle
fonctionnalité ou de corriger un bug sans affecter la
ligne de développement principale (la branche “main’).

» **Expérimentation : * On peut explorer des idées
sans craindre de "casser" le code stable.

La puissance de Git : master

e Dans Git, créer, utiliser et fusionner des branches est
une opération extrémement légére et rapide.

e |l est courant de créer plusieurs "branches
thématiques" (feature branches) par jour.

Le Cycle de Vie d'une Branche Thématique

1. Créer une nouvelle branche :

git branch nom-de-la-fonctionnalite

2. Se déplacer sur la nouvelle branche pour commencer a travailler :

git checkout nom-de-la-fonctionnalite

Raccourci (créer et se déplacer en une commande) :
"git checkout -b nom-de-la-fonctionnalite’

3. Travaliller sur la branche :

Modifier les fichiers, puis utiliser “git add™ et "git commit’
comme d'habitude. Tous les commits sont enregistres
sur cette branche isolée.

4. Retourner sur la branche principale :

git checkout main

5. Fusionner le travail terminé :

git merge nom-de-la-fonctionnalite

(Integre les commits de la branche thématique dans “main’).

Le "GitHub Flow" : Contribuer a n'importe quel projet

Comment proposer des modifications a un
projet que vous ne possédez pas ? Le flux

de travail standard est basée sur les "Forks"
et les "Pull Requests".

€© Branch & Code

Clone votre fork sur votre machine locale pour

a Fork E-i’;j pouvoir y travailler.
!
l

git clone [url-de-votre-fork]
Sur GitHub, cliquez sur le bouton "Fork".
Cela crée une copie personnelle (un "“fork")
du dépdt sur votre propre compte GitHub.

© Clone

Clonez votre fork sur votre machine locale
pour pouvoir y travaliller.

O Pull Request (PR)

Depuis votre fork sur GitHub, ouvrez une "Pull
Request" (demande de tirage) vers le dépot
z(l original. Cela lance le processus de proposition de

git clone [url-de-votre-fork] vos modifications.

Anatomie d'une Pull Request : Un Espace de Discussion et de Revue

Une PR n'est pas un simple mécanisme technique. C'est le lieu central de la collaboration autour d'une

modification.
- N
eve () —
Three seconds is better #2 €att (o swors -
tonychacon commnnsted 7 days 8go was ten roasbusyenralinibliates @
Q) Cenversatien { < Commits 0 [£) Fileschanged 1 © AT s wmme—
Conversation O @ ({ tonychacon commented 2 days sgo Q@ - L‘}"“ @
Lavels
Un f|| de dlscuss'on | Thrse seconds is better cant realtily seriser to ths best day. v '
Thank mere \

genéral pour discuter \ | :'““"" =
des 0bjeCt|fS, des Chle G 'm schacon commented 1xost ago Getalled

. , Assignee L2
de conception et des L @ Notonychecen

< blink.ino cemmented 2 Ineys ago - 7
retours. | Wotiostions
| v 1 wmmm blink.ive (O Gommeot 7 o) Natifications
85 -8.2-5,.98 Notifications cemmested our taxrthing
vods selntstlaatl) unline aes medifications -
: : int resoleads « .A 11118, 68E); Participants

Revue de Code o B @®
Permet de commenter 12| (@) schacon commented ago @~ | ¢ :
Chaque ||gne de code]‘ Thre is for actlinemas three secends is bettar | ° All checks passed O~

modifiée, posant des
questions ou suggérant des
améliorations.

5

>
]

l

“©- @ schacon commented 2 hours 8go

g |

All checks pasced or commamd

Merge pull request v

Liste des Commits

Un historique clair de toutes
les validations incluses dans la
PR.

Fichiers Modifiés ("Diff")
Une vue claire et unifiée de tous

les changements (ajouts et
suppressions).

Vérifications d'Intégration

Continue (Cl)

Des statuts automatiques
indiquent si les tests passent, si
le code respecte les standards,
etc.

Flux de Travail d’Equipe Avancés

Pour les trés grands projets, des flux de travail plus structurés sont nécessaires pour gérer des centaines de contributeurs.

Modele 1 : Le Gestionnaire d’Intégration

* Principe:
Un petit groupe de personnes (les "mainteneurs”) a le
droit d'écrire sur le dépot principal.

e Flux:
Les contributeurs externes “forkent” le projet,
proposent leurs modifications via des Pull Requests, et
les mainteneurs sont responsables de l'intégration (la
fusion) de ces contributions. C'est le modeéle de la
plupart des projets sur GitHub.

Modele 2 : Dictateur et Lieutenants (Ex: Noyau Linux)

e Principe:
Une structure hiérarchique pour gérer les contributions a tres

grande échelle.
blessed
reposntory

N
developer developer developer
public public public

1. Les développeurs envoient leur travail a un “lieutenant”
responsable d'un sous-systeme.

2. Chaque lieutenant fusionne et teste les contributions pour son
sous-systeme.

3. Le “dictateur” (le mainteneur principal) tire les modifications
des branches des lieutenants pour les intégrer dans le projet
principal.

Lighe de Commande (CLI) vs. Interface Graphique (GUI) : Quel Outil

pour Quel Usage ?

Principe fondamental : || n'y a pas de "meilleur" outil. L'approche la plus efficace consiste a "utiliser les
deux de maniére judicieuse". Une IHM (Interface Homme Machine) n'est qu'une surcouche qui exécute

des commandes Git en arriere-plan.

Interface Graphique (GUI) Ligne de Commande (CLI)
Ex: GitHub Desktop, GitKraken Le Terminal
Idéal pour: Idéal pour:
e Opérations trés visuelles : visualiser I'historique des e Apprendre le fonctionnement réel de Git.
branches, comparer les versions d'un fichier (diff). » Scripts et automatisation des taches.
e Indexation interactive (git add --patch). o Acces a 100% des fonctionnalités de Git.
» Opérations simples comme le commit et le push. » Opérations complexes : rebase, cherry-pick, etc.
Limites:
e Masque la complexité et peut nuire a la compréhension
profonde de Git.

e Toutes les commandes et options de Git ne sont pas
accessibles.

L'Art du Message de Commit : Rediger un Historique Utile

Pourquoi est-ce important 7 Un message de commit clair explique le "pourquoi" d'un changement, pas
seulement le "quoi". C'est une documentation essentielle pour vos collaborateurs et votre futur vous.

Le Modéle en 4 Regles (inspiré par Tim
Pope)

g

Sujet et corps séparés : Séparez le sujet du corps du
message par une ligne vide.

. Sujet concis : Limitez la ligne de sujet a 50

caracteres.

. Sujet a l'impératif : Rédigez le sujet a l'impératif

présent. Ex: "Ajoute la validation" et non "Ajouté la
validation". Pensez "Si appliqué, ce commit va... [votre
sujet]".

Corps explicatif : Le corps du message explique le
contexte, le probleme résolu et |a solution apportée.
Faites des retours a la ligne a 72 caracteres.

Exemple de bon commit

Corrige le probleme d'authentification des utilisateurs
Le corps du message donne plus de détails. La vérification du token
était effectuée avant 1la validation duv format de 1'email, ce qui

pouvait causer une erreur 500 dans certains cas de figure.

Cette modification inverse 1'ordre des vérifications pour assurer
que les données sont valides avant de contacter le service d'auth.

- Les listes a puces sont aussi possibles pour détailler les points.

Ce qu’il Faut Retenir

7

g
O

&
9!

La gestion de version est non-négociable pour tout projet logiciel
serieux, individuel ou en équipe.

Git est un outil local, rapide et puissant basé sur un modele
d'instantanés (snapshots) qui garantit intégrité et performance.

GitHub est la plateforme de collaboration qui héberge vos dépbts Git
et facilite la revue de code et le travail d'équipe.

Les branches sont votre meilleur outil pour un développement
organiseé et sans risque. Utilisez-les abondamment.

Les Pull Requests sont le coeur de |a revue de code et de |la
collaboration. C'est un espace de discussion, pas seulement une fusion.

Pour Aller Plus Loin

SECONR EOITION

Apress

Le Livre de Référence : Pro Git

de Scott Chacon et Ben Straub.

La ressource la plus compléte et
faisant autorité. Disponible
gratuitement en ligne en francais.

g

Documentation Officielle
gilt-scm.com

Pour des recherches précises sur
les commandes et les options.

O

Guides et Tutoriels GitHub

guides.github.com
learn.github.com

Des guides thématiques et des
tutoriels interactifs pour maitriser
le "GitHub Flow".

